INDIAN SCHOOL MUSCAT

FIRST MID TERM EXAMINATION

SEPTEMBER 2018

CLASS XI

Marking Scheme – CHEMISTRY [THEORY]

SET A

Q.NO.	Answers	Marks
		(with split up)
1.	Definition	1
2.	a)wave nature b)particle nature	1/2 +1/2
3.	S, R, Q, P, T	1
4.	0	1
	о — н	
5.	Definition	1
6.	Two points of differences	1+1
7.	$\mathbf{v}^{-} = \underline{1} = 109677 \left(\underline{1}_{.} - \underline{1}_{.} \right) \text{ cm}^{-1}$ $\lambda \qquad \qquad \mathbf{n_{1}}^{2} \qquad \mathbf{n_{2}}^{2}$	1/2
	$n_i = 1$ to $n_f = 2$	1/2
	wave number = $109677 (1/1 - 1/4) = 82257.5 \text{ cm}^{-1}$	1
8.	Species with same no of electrons but different atomic no $K^+/Ar/Cl^-/S^2-/P^3-/Sc^{3+}$	1 1/2
	Correct electronic configuration	1/2
	OR	
	Atomic size/nuclear charge/electronic configuration/screening effect	1
9.	a) Unnilquadium, Unq	1/2+1/2
	b) 3 rd group, 3rd period	1/2+1/2
10.	Equation	1/2
	F c on N = 0 , $O = -1 & 0$	1/2+1/2+1/2
11.	Green chemistry is a production process with minimum pollution to the environment which involves reduction in material .It is used in (i) In dry cleaning of clothes: (ii) In bleaching of paper	1 1/2+1/2

	(iii) synth	esis of chem	nicals				
12.	ozone and PAN are eye irritants. Ozone and nitric oxide cause headache, chest pain, cough and difficulty in breathing. cracking of rubber and damages plant life. corrosion of metals, stones, building materials and painted surface .(any two)				1/2+1/2		
	Use of cataly metabolize n				me plants like P	inus, Juniparus can	1/2+1/2
13.	Statement	1					
				Sample I		Sample II	
	Mass of I			5.9		11.2	
	Mass of 0			94.1		88.8	1+1
		O_2 that comb	oines	94.1 x 1		<u>88.8 x1</u>	
	with Ig h	nydrogen		5.9		11.2	
				= 16		8	
	Simple whol						
14.	 a) 392/98=4 moles b) 44.8/22.4=2 moles c) 9.033x10²³ /6.022x10²³=1.5 moles 						1x3
	a)			OR			
	Element	mass	mole	S	Ratio		1½
	С	93.7	93.7/	12= 7.8	1.24x 4=5		
	Н	6.29	6.29/	1= 6.29	1x4= 4		
	Empi	11/2					
15.	 b) Ppm=10/100x10⁶ =10⁵ ppm a) The negative sign means that the energy of the electron in the atom is lower than the energy of a free electron at rest. A free electron at rest has energy zero. As the electron gets closer to the nucleus its energy decreases and hence electronic energy becomes more and more negative b) A sample of hydrogen contains large number of atoms hence large numbers of different type of downward transitions take place c) Energy of an electron remains the same as long as it remains in the same orbit. 					1X 3	
16.	a) n-l-1=6-3-1=2					1x3	

	b) s &d orbital shapes	
177	c) 4 electrons	1.2
17.	Definitions 1.1/2	1x3
18.	a) $mvr = n h/2\pi$	1½
	2 πr=nh/mv	
	But $\lambda = h/mv$	
	ie $2 \pi r = n\lambda$	
	b) $r_n = 52.9 \times n^2 \text{ pm}$	
	$\frac{22.5 \times 10^{-1} \text{ pm}}{\text{Z}}.$	1½
	$-52.0 \text{ m}^2 -5.8 \text{ mm}$	
	$=\frac{52.9x1^2}{3^2} = 5.8 \text{ pm}$	
19.	a) elements in which the last electron enters the d-orbitals of the penultimate shell	1x3
	b) $(n-1)d^{1-10}$, ns^{1-2}	
	c) They exhibit more than one valency&hard with high mp &bp	
	,form coloured compounds,form alloys.	
20.	a) O^{2-} - the number of electrons increases hence the effective nuclear charge per	1/2+1/2
_0,	electron decreases in anion	1/2+1/2
	b) Mg-Completely filled 3s/penetration effect of 3s	
	c) F-effective nuclear charge and small size	1/2+1/2
21.	a) Stable configurationand added electron should go to next higher level which	1x3
	needs energy	
	b) To preserve the structure &principle of classification	
	c) Small size/high electronegativity/ionisation enthalpy/absence of d orbitals	
22.	Correct definitions	1x3
23.	a) Due to small size&high electro negativity of N than P,more repulsions	1x3
	between bond pairs around nitrogen in ammonia	
	b) two equatorial lone pairs making the final structure T-shaped	
2.4	c) Bond dipoles do not get cancelled in OCS.	11/
24.	a) 4 bps,&1 lp-K shapeb) 4Bps, 0 lp-Tetrahedral	11/2
25.	a) 4вря, о пр-теtrапеская	1½ 1x2
23.	(i) &(ii) Correct statement	1 X Z
	b) $h = 6.63 \times 10^{-34} \text{ Js}$	
	$\dot{\text{K.E.}} = 246 \text{ KJ mol}^{-1} = 4.084 \text{ x } 10^{-19} \text{ J atom}^{-1} - \frac{1}{2}$	
	KF = hv - hv	3
	$hv_0 = hv - K.E. = 6.63 \times 10^{-34} \times 3 \times 10^{8} / 4 \times 10^{-7} - 4.084 \times 10^{-19} - \frac{1}{2} + \frac{1}{2}$	
	Minimum energy = $8.88 \times 10^{-20} \text{J}$	
	Maximum wavelength = $2.23 \times 10^{-6} \text{ m}$ -	

	OR				
	a) stable d ⁵ configuration	1			
	b) in accordance with Hunds rulec) Correct statement				
	d) $\Delta x \cdot \Delta v \geq \underline{h}$ -				
	$\Delta x \cdot \Delta v = 6.63 \times 10^{-34} / 4 \times 3.14 \times 25 \times 10^{-6} - \frac{1}{2}$ $= 2.11 \times 10^{-30} \text{ m}^2/\text{s} - \frac{1}{2}$				
	Small Δx . Δv it is insignificant - $\frac{1}{2}$				
26.	 a) Definitions b) CH₄, SO₂, BCl₃,CO₂ c) Low IE/large negative EGE/High Lattice enthalpy (any two) 	1x3 1 1/2+1/2			
	OR				
	a) Definition				
	b) Correct structures	1			
	c) Could not explain incomplete octet/expanded octet/noble gas compounds/stability (any two)	1/2+1/2			
	Examples	1/2+1/2			
	d) Due to lp-bp repulsion				
27.	a) Elements exist as isotopes with different percentage composition	1			
	b) (i)CH ₂ O (ii) H ₃ PO ₄	1/2+1/2			
	c) (i) mole fraction of NaOH= $\frac{4/40}{4/40+36/18}$ =0.047	11/2			
	Mole fraction of $H_2O=0.953$				
	V=mxd=(4+36)1=40 ml	1½			
	$(ii)M = 4 \times 1000 = 2.5 M$ 40×40				
	OR				
		1x2			

a) Correct Statement		3
b)		
$2Na + 2H_2O \rightarrow 2 NaOH + H_2$ $46 36 80 2$	1/2	
2.3 10		
Mass of NaOH = $80 \times 2.3/46 = 4 \text{ gm}$	1	
Volume of Hydrogen = $\frac{22.4 \times 2.3}{46}$ = 1.12 L	1	
Sodium	1/2	