INDIAN SCHOOL MUSCAT

FIRST MID TERM EXAMINATION
SEPTEMBER 2018

CLASS XI
 Marking Scheme - CHEMISTRY [THEORY]

SET A

Q.NO.	Answers	Marks (with split up)
1.	Definition	1
2.	a)wave nature b)particle nature	$1 / 2+1 / 2$
3.	S, R, Q, P, T	1
4.		1
5.	Definition	1
6.	Two points of differences	1+1
7.	$\begin{aligned} & \quad \mathbf{v}^{-}=\frac{\mathbf{1}}{\boldsymbol{\lambda}}=\mathbf{1 0 9 6 7 7}\left(\underset{\mathbf{n}_{\mathbf{1}}{ }^{2}}{\mathbf{1}} \underline{\mathbf{n}}_{\mathbf{2}}{ }^{2}{ }^{\mathbf{2}}\right) \mathrm{cm}^{-1} \\ & n_{i}=1 \text { to } n_{f}=2 \\ & \text { wave number }=109677(1 / 1-1 / 4)=82257.5 \mathrm{~cm}^{-1} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$
8.	Species with same no of electrons but different atomic no $\mathrm{K}^{+} / \mathrm{Ar} / \mathrm{Cl}^{-} / \mathrm{S}^{2-} / \mathrm{P}^{3-} / \mathrm{Sc}^{3+}$ Correct electronic configuration OR Atomic size/nuclear charge/electronic configuration/screening effect	$\begin{aligned} & \hline 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
9.	a) Unnilquadium, Unq b) $3^{\text {rd }}$ group, 3rd period	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
10.	Equation $\mathrm{Fc} \text { on } \mathrm{N}=0 \quad, \mathrm{O}=-1 \& 0$	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2+1 / 2+1 / 2 \end{array}$
11.	Green chemistry is a production process with minimum pollution to the environment which involves reduction in material .It is used in (i) In dry cleaning of clothes: (ii) In bleaching of paper	$\begin{aligned} & \hline 1 \\ & 1 / 2+1 / 2 \end{aligned}$

	b) s \&d orbital shapes c) 4 electrons	
17.	Definitions	1x3
18.	a) $\mathbf{m v r}=\mathbf{n h} / 2 \pi$ $2 \pi r=n h / m v$ But $\lambda=\mathrm{h} / \mathrm{mv}$ ie $2 \boldsymbol{\pi r}=\mathrm{n} \lambda$ $\text { b) } \begin{aligned} & \mathrm{r}_{\mathrm{n}}=\frac{52.9 \mathrm{xn}^{2}}{\mathrm{Z}} \mathrm{pm} \\ & =\frac{52.9 \times 1^{2}}{3^{2}}=5.8 \mathrm{pm} \end{aligned}$	$11 / 2$ $11 / 2$
19.	a) elements in which the last electron enters the d-orbitals of the penultimate shell b) $(\mathrm{n}-1) \mathrm{d}^{1-10}, \mathrm{~ns}{ }^{1-2}$ c) They exhibit more than one valency\&hard with high $\mathrm{mp} \& \mathrm{bp}$,form coloured compounds,form alloys.	1×3
20.	a) O^{2-} - the number of electrons increases hence the effective nuclear charge per electron decreases in anion b) Mg -Completely filled $3 \mathrm{~s} /$ penetration effect of 3 s c) F-effective nuclear charge and small size	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
21.	a) Stable configurationand added electron should go to next higher level which needs energy b) To preserve the structure \&principle of classification c) Small size/high electronegativity/ionisation enthalpy/absence of d orbitals	1x3
22.	Correct definitions	1x3
23.	a) Due to small size\&high electro negativity of N than P ,more repulsions between bond pairs around nitrogen in ammonia b) two equatorial lone pairs making the final structure T-shaped c) Bond dipoles do not get cancelled in OCS.	1x3
24.	a) $4 \mathrm{bps}, \& 1 \mathrm{lp}-\mathrm{K}$ shape b) $4 \mathrm{Bps}, 0 \mathrm{lp}$-Tetrahedral	$\begin{aligned} & \hline 11 / 2 \\ & 11 / 2 \\ & \hline \end{aligned}$
25.	a) (i) \&(ii) Correct statement $$	1×2 3

Page 3 of 5

	a) stable d^{5} configuration b) in accordance with Hunds rule c) Correct statement $\text { d) } \begin{aligned} & \Delta \mathrm{x} \cdot \Delta \mathrm{v} \geq \underline{\mathrm{h}} \\ & 4 \pi \mathrm{~m} \\ & \Delta \mathrm{x} \cdot \Delta \mathrm{v}=6.63 \times 10^{-34} / 4 \times 3.14 \times 25 \times 10^{-6}- \\ &=2.11 \times 10^{-30} \mathrm{~m}^{2} / \mathrm{s} \end{aligned}$ Small $\Delta \mathrm{x} . \Delta \mathrm{v}$ it is insignificant -	(1 1 1 2
26.	a) Definitions b) $\mathrm{CH}_{4}, \mathrm{SO}_{2}, \mathrm{BCl}_{3}, \mathrm{CO}_{2}$ c) Low IE/large negative EGE/High Lattice enthalpy (any two) OR a) Definition b) Correct structures c) Could not explain incomplete octet/expanded octet/noble gas compounds/stability (any two) Examples d) Due to lp-bp repulsion		1x3 1 $1 / 2+1 / 2$ 1 1 $1 / 2+1 / 2$ $1 / 2+1 / 2$
27.	a) Elements exist as isotopes with different percentage composition b) $(\mathrm{i}) \mathrm{CH}_{2} \mathrm{O}$ (ii) $\mathrm{H}_{3} \mathrm{PO}_{4}$ c) (i) mole fraction of $\mathrm{NaOH}=\frac{4 / 40}{4 / 40+36 / 18}=0.047$ Mole fraction of $\mathrm{H}_{2} \mathrm{O}=0.953$ $\mathrm{V}=\mathrm{mxd}=(4+36) 1=40 \mathrm{ml}$ (ii) $\mathrm{M}=\frac{4 \times 1000=2.5 \mathrm{M}}{40 \times 40}$		$11 / 2$

